DISS ETH NO. 19537

Novel Nanoiron and Nanozinc Compounds: The Next Generation of Food Fortificants?

A dissertation submitted to ETH Zürich

For the degree of **Doctor of Sciences**

Presented by

Florentine Marianne Hilty-Vancura

Dipl. Chem., Universität Zürich

Born 07.02.1979 Citizen of the Principality of Liechtenstein

Accepted on the recommendation of

Prof. Dr. med. Michael B. Zimmermann, examiner Prof. Dr. Richard F. Hurrell, co-examiner Prof. Dr. Sotiris E. Pratsinis, co-examiner

TABLE OF CONTENTS

Abbreviatior	1\$	1
Summary		3
Zusammenfa	assung	6
Introduction		9
Literature R	eview	13
1. Iron a	and Zinc Absorption	13
1.1. Iroi	n Metabolism and Deficiency	13
1.1.1.	Chemistry of Iron	13
1.1.2.	Iron Requirements and Losses	14
1.1.3.	Physiological Role of Iron	14
1.1.4.	Definition and Causation of Iron Deficiency	15
1.1.5.	Epidemiology	16
1.1.6.	Consequences of Iron Deficiency	
1.1.7.	Economics of Iron Deficiency	19
1.1.8.	Iron Toxicity and Overload	19
1.2. Zine	c Metabolism and Deficiency	
1.2.1.	Chemistry of Zinc	
1.2.2.	Zinc Functions and Metabolism	
1.2.3.	Zinc Requirements and Deficiency	
1.2.4.	Zinc Toxicity and Overload	
1.3. Ph	ysiology of Iron and Zinc Absorption	
1.3.1.	Oral Cavity and Stomach	25
1.3.2.	Duodenum, Jejunum, and Ileum	
1.3.3.	Iron Uptake	29
1.3.4.	Zinc Uptake	31
1.3.5.	Large Intestine	
1.3.6.	Regulation of Iron Uptake	
1.3.7.	Regulation of Zinc Uptake	
1.3.8.	Dietary Enhancers and Inhibitors of Iron and Zinc Absorption	
1.3.9.	Iron and Zinc Interaction	
1.4. Str	ategies to Combat Iron and Zinc Deficiency	
1.4.1.	Supplementation	
1.4.2.	Fortification	
1.4.2	2.1. Iron Food Fortificants	
1.4.2	.2. Zinc Food Fortificants	42
1.4.2	.3. Food Vehicles	43
1.4.2	.4. Bioavailability	45
1.4.2	.5. Sensory Challenges	
1.5. Me	thods to Evaluate Potential Food Fortificants	
1.5.1.	In-vitro Methods	48

1.5.2.	In-vivo Methods	
2. Nan	oparticlesfor Nutritional Applications	
2.1. Wł	nat is Nano and Nanotechnology?	
2.2. Na	turally Occurring Nano-Sized Structures	<u>.</u> 50
2.3. Sp	ecial Properties of Nanostructured Compounds	51
2.4. Sy 2.4.1. 2.4.2.	nthetic Nanoparticles Flame Spray Pyrolysis Preparation by Other Methods	53 53 57
2.5. An 2.5.1. 2.5.2.	alysis of Nanostructures Structure and Morphology Determination Specific Surface Area and Size Determination	57 58 58
3. Nano	ptechnology in Foods	
3.1. Po	tential Benefits	
3.2. Po 3.2.1. 3.2.2. 3.2.3.	tential applications Nanostructured Delivery Systems for Minerals Food Packaging What Is on the Market?	60 60 61 62
3.3. Po 3.3.1. 3.3.2. 3.3.3.	tential Toxicology of Nanostructured Compounds Interaction of Nanostructured Compounds with Biological Systems. Potential Mechanismsof Action Gastro Intestinal Toxicology.	
3.4. Re	ferences	69
Manuscripts	λ	85
Manuscrip Nanostruc	t 1: Development and Optimization of Iron- and Zinc-Containing tured Powders for Nutritional Applications	85
Manuscrip Rats Witho	t 2: Iron from Nanocompounds Containing Iron and Zinc Is Highly Bio out Tissue Accumulation	available in 111
Manuscrip Solubility ir	t 3: Incorporation of Mg and Ca into Nanostructured Fe ₂ O ₃ Improves n Dilute Acid and Sensory	Fe 135
Conclusion	s and Perspectives	
Appendix		
Review: N	anocompounds of iron and zinc: their potential in nutrition	
Short com deficient	munication: Schoolchildren in the Principality of Liechtenstein are mi	Idly iodine 185
Curriculum	Vitae	