Diss. ETH No. 20442

Safe Loading and Efficient Runtime Confinement: A Foundation for Secure Execution

A dissertation submitted to ETH ZURICH

for the degree of Doctor of Sciences

presented by Mathias J. Payer Master of Science ETH in Computer Science, ETH Zurich born April 29, 1981 citizen of the Principality of Liechtenstein

> accepted on the recommendation of Prof. Dr. Thomas R. Gross, examiner Prof. Dr. Srdjan Capkun, co-examiner Prof. Dr. Steve Hand, co-examiner

Contents

1	Inti	roduction 1	
	1.1	Attack model	
	1.2	Requirements for a secure execution platform	
	1.3	The foundation of a secure dynamic execution platform	
	1.4	Thesis statement	
	1.5	Libdetox	
	1.6	Contributions	
	1.7	Publications	
	1.8	Outline	
2	Bac	kground information 11	
	2.1	Attack vectors	
	2.2	Exploit classes	
	2.3	Comparison to Erlingssorrs attack classification	
	2.4	Security of the standard loader	
	2.5	Binary translation	
	2.6	Summary	
3	Rel	ated work 25	
	3.1	Binary translation	
	3.2	Software-based Fault Isolation (SFI).	
	3.3	System call authorization	
	3.4	Full-system virtualization	
	3.5	Static program verification	
	3.6	Secure compiler extensions	
	3.7	Summary of different protection techniques	

4	Des	ign and security guidelines	35
	4.1	Safe loading in a trusted runtime environment	.37
	4.2	Software-based fault isolation layer	.40
	4.3	Dynamic Control Flow Integrity (CFI)	.43
	4.4	Model generation for dynamic CFI	.44
	4.5	Policy-based system call interposition	.48
	4.6	Summary	.51
5	Sys	tem architecture and implementation	53
	5.1	Secure loader	.54
	5.2	A generic dynamic binary translator.	.60
	5.3	Software-based fault isolation layer.	.66
	5.4	Dynamic control flow integrity.	.70
	5.5	Policy-based system call authorization	.72
	5.6	Discussion.	.74
6	Eva	luation	75
	6.1	Security evaluation.	.75
	6.2	SPEC CPU 2006 characteristics	.81
	6.3	Libdetox performance evaluation	.82
	6.4	Control flow integrity using ELF information.	.85
	6.5	System call policies.	.88
	6.6	Apache case study.	.91
7	Cas	e study: dynamic race detection	93
	7.1	Attack model and background information.	.95
	7.2	The DynaRace approach	.96
	7.3	Implementation	.101
	7.4	Implementation alternatives.	.106
	7.5	Evaluation	
	7.6	Related work to file-based race detection	.116
	7.7	Limitations and weaknesses	
	7.8	Summary	.118
8	Fut	ure directions	119
	8.1	Compiler-based CFG generation.	.119

	8.2	A compiler-driven approach to system call policies	.120	
	8.3	I/O purification extension	.120	
	8.4	Dynamic patching.	.121	
9	Con	cluding remarks	123	
	9.1	Summary and contributions.	.123	
	9.2	Expandability.	.124	
A	x86	ISA	125	
B	ELF	format and the Linux loader	126	
С	Sys	tem call interface	129	
	C.I	Argument passing.	.129	
	C.2	Software interrupts.	.130	
	C.3	sysenter instruction.	.130	
D	CFI	micro benchmarks	131	
Е	Lib	detox evaluation with additional optimizations	132	
Re	References			
A	Acronyms			
C	Curriculum Vitae			