
Diss. ETH No. 20442

Safe Loading and Efficient Runtime Confinement:
A Foundation for Secure Execution

A dissertation submitted to
ETH ZURICH

for the degree of
Doctor of Sciences

presented by
Mathias J. Payer

Master of Science ETH in Computer Science, ETH Zurich
born April 29, 1981

citizen of the Principality of Liechtenstein

accepted on the recommendation of
Prof. Dr. Thomas R. Gross, examiner
Prof. Dr. Srdjan Capkun, co-examiner

Prof. Dr. Steve Hand, co-examiner

2012



Contents

1 Introduction 1

1.1 Attack model 3

1.2 Requirements for a secure execution platform 3

1.3 The foundation of a secure dynamic execution platform 4

1.4 Thesis statement 7

1.5 Libdetox 7

1.6 Contributions 8

1.7 Publications 8

1.8 Outline 9

2 Background information 11

2.1 Attack vectors 11

2.2 Exploit classes 12

2.3 Comparison to Erlingssorrs attack classification 20

2.4 Security of the standard loader 21

2.5 Binary translation 23

2.6 Summary 24

3 Related work 25

3.1 Binary translation 25

3.2 Software-based Fault Isolation (SFI) 28

3.3 System call authorization 29

3.4 Full-system virtualization 30

3.5 Static program verification 30

3.6 Secure compiler extensions 33

3.7 Summary of different protection techniques 33

ix



x CONTENTS

4 Design and security guidelines 35

4.1 Safe loading in a trusted runtime environment 37

4.2 Software-based fault isolation layer 40

4.3 Dynamic Control Flow Integrity (CFI) 43

4.4 Model generation for dynamic CFI 44

4.5 Policy-based system call interposition 48

4.6 Summary 51

5 System architecture and implementation 53

5.1 Secure loader 54

5.2 A generic dynamic binary translator 60

5.3 Software-based fault isolation layer 66

5.4 Dynamic control flow integrity 70

5.5 Policy-based system call authorization 72

5.6 Discussion 74

6 Evaluation 75

6.1 Security evaluation 75

6.2 SPEC CPU 2006 characteristics 81

6.3 Libdetox performance evaluation 82

6.4 Control flow integrity using ELF information 85

6.5 System call policies 88

6.6 Apache case study 91

7 Case study: dynamic race detection 93

7.1 Attack model and background information 95

7.2 The DynaRace approach 96

7.3 Implementation 101

7.4 Implementation alternatives 106

7.5 Evaluation 108

7.6 Related work to file-based race detection 116

7.7 Limitations and weaknesses 117

7.8 Summary 118

8 Future directions 119
8.1 Compiler-based CFG generation 119



CONTENTS xi

8.2 A compiler-driven approach to system call policies 120

8.3 I/O purification extension 120

8.4 Dynamic patching 121

9 Concluding remarks 123
9.1 Summary and contributions 123

9.2 Expandability 124

A x86 ISA 125

B ELF format and the Linux loader 126

C System call interface 129

C.I Argument passing 129

C.2 Software interrupts 130

C.3 sysenter instruction 130

D CFI micro benchmarks 131

E Libdetox evaluation with additional optimizations 132

References 134

Acronyms 141

Curriculum Vitae 142


