PROBABILITY, MARKOV CHAINS, QUEUES, AND SIMULATION

The Mathematical Basis of Performance Modeling

William J. Stewart
Contents

Preface and Acknowledgments

I PROBABILITY

1 Probability

1.1 Trials, Sample Spaces, and Events

1.2 Probability Axioms and Probability Space

1.3 Conditional Probability

1.4 Independent Events

1.5 Law of Total Probability

1.6 Bayes' Rule

1.7 Exercises

2 Combinatorics—The Art of Counting

2.1 Permutations

2.2 Permutations with Replacements

2.3 Permutations without Replacement

2.4 Combinations without Replacement

2.5 Combinations with Replacements

2.6 Bernoulli (Independent) Trials

2.7 Exercises

3 Random Variables and Distribution Functions

3.1 Discrete and Continuous Random Variables

3.2 The Probability Mass Function for a Discrete Random Variable

3.3 The Cumulative Distribution Function

3.4 The Probability Density Function for a Continuous Random Variable

3.5 Functions of a Random Variable

3.6 Conditioned Random Variables

3.7 Exercises

4 Joint and Conditional Distributions

4.1 Joint Distributions

4.2 Joint Cumulative Distribution Functions

4.3 Joint Probability Mass Functions

4.4 Joint Probability Density Functions

4.5 Conditional Distributions

4.6 Convolutions and the Sum of Two Random Variables

4.7 Exercises

5 Expectations and More

5.1 Definitions

5.2 Expectation of Functions and Joint Random Variables

5.3 Probability Generating Functions for Discrete Random Variables
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>Moment Generating Functions</td>
<td>103</td>
</tr>
<tr>
<td>5.5</td>
<td>Maxima and Minima of Independent Random Variables</td>
<td>108</td>
</tr>
<tr>
<td>5.6</td>
<td>Exercises</td>
<td>110</td>
</tr>
<tr>
<td>6</td>
<td>Discrete Distribution Functions</td>
<td>115</td>
</tr>
<tr>
<td>6.1</td>
<td>The Discrete Uniform Distribution</td>
<td>115</td>
</tr>
<tr>
<td>6.2</td>
<td>The Bernoulli Distribution</td>
<td>116</td>
</tr>
<tr>
<td>6.3</td>
<td>The Binomial Distribution</td>
<td>117</td>
</tr>
<tr>
<td>6.4</td>
<td>Geometric and Negative Binomial Distributions</td>
<td>120</td>
</tr>
<tr>
<td>6.5</td>
<td>The Poisson Distribution</td>
<td>124</td>
</tr>
<tr>
<td>6.6</td>
<td>The Hypergeometric Distribution</td>
<td>127</td>
</tr>
<tr>
<td>6.7</td>
<td>The Multinomial Distribution</td>
<td>128</td>
</tr>
<tr>
<td>6.8</td>
<td>Exercises</td>
<td>130</td>
</tr>
<tr>
<td>7</td>
<td>Continuous Distribution Functions</td>
<td>134</td>
</tr>
<tr>
<td>7.1</td>
<td>The Uniform Distribution</td>
<td>134</td>
</tr>
<tr>
<td>7.2</td>
<td>The Exponential Distribution</td>
<td>136</td>
</tr>
<tr>
<td>7.3</td>
<td>The Normal or Gaussian Distribution</td>
<td>141</td>
</tr>
<tr>
<td>7.4</td>
<td>The Gamma Distribution</td>
<td>145</td>
</tr>
<tr>
<td>7.5</td>
<td>Reliability Modeling and the Weibull Distribution</td>
<td>149</td>
</tr>
<tr>
<td>7.6</td>
<td>Phase-Type Distributions</td>
<td>155</td>
</tr>
<tr>
<td>7.6.1</td>
<td>The Erlang-2 Distribution</td>
<td>155</td>
</tr>
<tr>
<td>7.6.2</td>
<td>The Erlang-r Distribution</td>
<td>158</td>
</tr>
<tr>
<td>7.6.3</td>
<td>The Hypoexponential Distribution</td>
<td>162</td>
</tr>
<tr>
<td>7.6.4</td>
<td>The Hyperexponential Distribution</td>
<td>164</td>
</tr>
<tr>
<td>7.6.5</td>
<td>The Coxian Distribution</td>
<td>166</td>
</tr>
<tr>
<td>7.6.6</td>
<td>General Phase-Type Distributions</td>
<td>168</td>
</tr>
<tr>
<td>7.6.7</td>
<td>Fitting Phase-Type Distributions to Means and Variances</td>
<td>171</td>
</tr>
<tr>
<td>7.7</td>
<td>Exercises</td>
<td>176</td>
</tr>
<tr>
<td>8</td>
<td>Bounds and Limit Theorems</td>
<td>180</td>
</tr>
<tr>
<td>8.1</td>
<td>The Markov Inequality</td>
<td>180</td>
</tr>
<tr>
<td>8.2</td>
<td>The Chebychev Inequality</td>
<td>181</td>
</tr>
<tr>
<td>8.3</td>
<td>The Chemoff Bound</td>
<td>182</td>
</tr>
<tr>
<td>8.4</td>
<td>The Laws of Large Numbers</td>
<td>182</td>
</tr>
<tr>
<td>8.5</td>
<td>The Central Limit Theorem</td>
<td>184</td>
</tr>
<tr>
<td>8.6</td>
<td>Exercises</td>
<td>187</td>
</tr>
</tbody>
</table>

II MARKOV CHAINS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Discrete- and Continuous-Time Markov Chains</td>
<td>193</td>
</tr>
<tr>
<td>9.1</td>
<td>Stochastic Processes and Markov Chains</td>
<td>193</td>
</tr>
<tr>
<td>9.2</td>
<td>Discrete-Time Markov Chains: Definitions</td>
<td>195</td>
</tr>
<tr>
<td>9.3</td>
<td>The Chapman-Kolmogorov Equations</td>
<td>202</td>
</tr>
<tr>
<td>9.4</td>
<td>Classification of States</td>
<td>206</td>
</tr>
<tr>
<td>9.5</td>
<td>Irreducibility</td>
<td>214</td>
</tr>
<tr>
<td>9.6</td>
<td>The Potential, Fundamental, and Reachability Matrices</td>
<td>218</td>
</tr>
<tr>
<td>9.6.1</td>
<td>Potential and Fundamental Matrices and Mean Time to Absorption</td>
<td>219</td>
</tr>
<tr>
<td>9.6.2</td>
<td>The Reachability Matrix and Absorption Probabilities</td>
<td>223</td>
</tr>
</tbody>
</table>
Contents

11.2 Birth-Death Processes: The $M/M\lambda$ Queue 402
11.2.1 Description and Steady-State Solution 402
11.2.2 Performance Measures 406
11.2.3 Transient Behavior 412
11.3 General Birth-Death Processes 413
11.3.1 Derivation of the State Equations 413
11.3.2 Steady-State Solution 415
11.4 Multiserver Systems 419
11.4.1 The $M/M/c$ Queue 419
11.4.2 The $M/M/\infty$ Queue 425
11.5 Finite-Capacity Systems—The $M/M/K$ Queue 425
11.6 Multiserver, Finite-Capacity Systems—The $M/M/c/K$ Queue 432
11.7 Finite-Source Systems—The $M/M/cf/M$ Queue 434
11.8 State-Dependent Service 437
11.9 Exercises 438

12 Queues with Phase-Type Laws: $\{euts\}$ Matrix-Geometric Method 444
12.1 The Erlang-r Service Model—The $M/E\lambda$ Queue 444
12.2 The Erlang-r Arrival Model—The $E_r/M/1$ Queue 450
12.3 The $M/Ho/JX$ and $H?/M/\lambda$ Queues 454
12.4 Automating the Analysis of Single-Server Phase-Type Queues 458
12.5 The $H/T/E_\lambda$ Queue and General $Ph/Ph\lambda$ Queues 460
12.6 Stability Results for $Ph/Ph\lambda$ Queues 466
12.7 Performance Measures for $Ph/Ph/1$ Queues 468
12.8 Matlab code for $Pli/Ph\lambda$ Queues 469
12.9 Exercises 471

13 The z-Transform Approach to Solving Markovian Queues 475
13.1 The z-Transform 475
13.2 The Inversion Process 478
13.3 Solving Markovian Queues using z-Transforms 484
13.3.1 The z-Transform Procedure 484
13.3.2 The $M/M\lambda$ Queue Solved using z-Transforms 484
13.3.3 The $M/M\lambda$ Queue with Arrivals in Pairs 486
13.3.4 The $M/E\lambda$ Queue Solved using z-Transforms 488
13.3.5 The $E_r/M\lambda$ Queue Solved using z-Transforms 496
13.3.6 Bulk Queueing Systems 503
13.4 Exercises 506

14 The $M/G/l$ and $G/M/l$ Queues 509
14.1 Introduction to the $M/G/\lambda$ Queue 509
14.2 Solution via an Embedded Markov Chain 510
14.3 Performance Measures for the $M/G/\lambda$ Queue 515
14.3.1 The Pollaczek-Khintchine Mean Value Formula 515
14.3.2 The Pollaczek-Khintchine Transform Equations 518
14.4 The $M/G/\lambda$ Residual Time: Remaining Service Time 523
14.5 The $A/G/1$ Busy Period 526
14.6 Priority Scheduling 531
14.6.1 $M/M\lambda$: Priority Queue with Two Customer Classes 531
14.6.2 $M/G/l$: Nonpreemptive Priority Scheduling 533
14.6.3 M/G/l: Preempt-Resume Priority Scheduling 536
14.6.4 A Conservation Law and SPTF Scheduling 538
14.7 The M/G/l/K Queue 542
14.8 The G/M/l Queue 546
14.9 The G/M/l/K Queue 551
14.10 Exercises 553

15 Queueing Networks 559
15.1 Introduction 559
 15.1.1 Basic Definitions 559
 15.1.2 The Departure Process—Burke's Theorem 560
 15.1.3 Two M/M/l Queues in Tandem 562
15.2 Open Queueing Networks 563
 15.2.1 Feedforward Networks 563
 15.2.2 Jackson Networks 563
 15.2.3 Performance Measures for Jackson Networks 567
15.3 Closed Queueing Networks 568
 15.3.1 Definitions 568
 15.3.2 Computation of the Normalization Constant: Buzen's Algorithm 570
 15.3.3 Performance Measures 577
15.4 Mean Value Analysis for Closed Queueing Networks 582
15.5 The Flow-Equivalent Server Method 591
15.6 Multiclass Queueing Networks and the BCMP Theorem 594
 15.6.1 Product-Form Queueing Networks 595
 15.6.2 The BCMP Theorem for Open, Closed, and Mixed Queueing Networks 598
15.7 Java Code 602
15.8 Exercises 607

IV SIMULATION 611

16 Some Probabilistic and Deterministic Applications of Random Numbers 613
16.1 Simulating Basic Probability Scenarios 613
16.2 Simulating Conditional Probabilities, Means, and Variances 618
16.3 The Computation of Definite Integrals 620
16.4 Exercises 623

17 Uniformly Distributed "Random" Numbers 625
17.1 Linear Recurrence Methods 626
17.2 Validating Sequences of Random Numbers 630
 17.2.1 The Chi-Square "Goodness-of-Fit" Test 630
 17.2.2 The Kolmogorov-Smirnov Test 633
 17.2.3 "Run" Tests 634
 17.2.4 The "Gap" Test 640
 17.2.5 The "Poker" Test 641
 17.2.6 Statistical Test Suites 644
17.3 Exercises 644
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.3</td>
<td>Vector and Matrix Norms</td>
<td>723</td>
</tr>
<tr>
<td>B.4</td>
<td>Vector Spaces</td>
<td>724</td>
</tr>
<tr>
<td>B.5</td>
<td>Determinants</td>
<td>726</td>
</tr>
<tr>
<td>B.6</td>
<td>Systems of Linear Equations</td>
<td>728</td>
</tr>
<tr>
<td>B.6.1</td>
<td>Gaussian Elimination and EU Decompositions</td>
<td>730</td>
</tr>
<tr>
<td>B.7</td>
<td>Eigenvalues and Eigenvectors</td>
<td>734</td>
</tr>
<tr>
<td>B.8</td>
<td>Eigenproperties of Decomposables, Nearly Decomposables, and Cyclic</td>
<td>738</td>
</tr>
<tr>
<td></td>
<td>Stochastic Matrices</td>
<td></td>
</tr>
<tr>
<td>B.8.1</td>
<td>Normal Form</td>
<td>738</td>
</tr>
<tr>
<td>B.8.2</td>
<td>Eigenvalues of Decomposable Stochastic Matrices</td>
<td>739</td>
</tr>
<tr>
<td>B.8.3</td>
<td>Eigenvectors of Decomposable Stochastic Matrices</td>
<td>741</td>
</tr>
<tr>
<td>B.8.4</td>
<td>Nearly Decomposable Stochastic Matrices</td>
<td>743</td>
</tr>
<tr>
<td>B.8.5</td>
<td>Cyclic Stochastic Matrices</td>
<td>744</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>745</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>749</td>
</tr>
</tbody>
</table>