
High Performance Python

Micha Gorelick and Ian Ozsvald

Beijing • Cambridge • Farnham • Koln • Sebastopol • Tokyo O'REILLY0

Table of Contents

Preface ix

1. Understanding Performant Python 1
The Fundamental Computer System 1

Computing Units 2
Memory Units 5
Communications Layers 7

Putting the Fundamental Elements Together 9
Idealized Computing Versus the Python Virtual Machine 10

So Why Use Python? 13

2. Profiling to Find Bottlenecks 17
Profiling Efficiently 18
Introducing the Julia Set 19
Calculating the Full Julia Set 23
Simple Approaches to Timing—print and a Decorator 26
Simple Timing Using the Unix time Command 29
Using the cProfile Module 31
Using runsnakerun to Visualize cProfile Output 36
Using line_profiler for Line-by-Line Measurements 37
Using memory_profiler to Diagnose Memory Usage . 42
Inspecting Objects on the Heap with heapy 48
Using dowser for Live Graphing of Instantiated Variables 50
Using the dis Module to Examine CPython Bytecode 52

Different Approaches, Different Complexity 54
Unit Testing During Optimization to Maintain Correctness 56

No-op @profile Decorator 57
Strategies to Profile Your Code Successfully 59
Wrap-Up 60

3. Lists and Tuples 61
A More Efficient Search 64
Lists Versus Tuples 66

Lists as Dynamic Arrays 67
Tuples As Static Arrays 70

Wrap-Up 72

4. Dictionaries and Sets 73
How Do Dictionaries and Sets Work? 77

Inserting and Retrieving 77
Deletion 80
Resizing 81
Hash Functions and Entropy 81

Dictionaries and Namespaces 85
Wrap-Up 88

5. Iterators and Generators 89
Iterators for Infinite Series 92
Lazy Generator Evaluation 94
Wrap-Up 98

6. Matrix and Vector Computation 99
Introduction to the Problem 100
Aren't Python Lists Good Enough? 105

Problems with Allocating Too Much 106
Memory Fragmentation 109

Understanding perf 111
Making Decisions with perf s Output 113
Enter numpy 114

Applying numpy to the Diffusion Problem 117
Memory Allocations and In-Place Operations 120
Selective Optimizations: Finding What Needs to Be Fixed 124

numexpr: Making In-Place Operations Faster and Easier 127
A Cautionary Tale: Verify "Optimizations" (scipy) 129
Wrap-Up 130

7. Compiling to C 135
What Sort of Speed Gains Are Possible? 136
JIT Versus AOT Compilers 138
Why Does Type Information Help the Code Run Faster? 138
Using a C Compiler 139
Reviewing the Julia Set Example 140
Cython 140

iv | Table of Contents

Compiling a Pure-Python Version Using Cython 141
Cython Annotations to Analyze a Block of Code 143
Adding Some Type Annotations 145

Shed Skin 150
Building an Extension Module 151
The Cost of the Memory Copies 153

Cython and numpy 154
Parallelizing the Solution with OpenMP on One Machine 155

Numba 157
Pythran 159
PyPy 160

Garbage Collection Differences 161
Running PyPy and Installing Modules 162

When to Use Each Technology 164
Other Upcoming Projects 165
A Note on Graphics Processing Units (GPUs) 166
A Wish for a Future Compiler Project 166

Foreign Function Interfaces 167
ctypes 167
cffi 170
f2py 173
CPython Module 175

Wrap-Up 179

8. Concurrency 181
Introduction to Asynchronous Programming 182
Serial Crawler 185
gevent 187
tornado 192
AsyncIO 196
Database Example 198
Wrap-Up 201

9. The multiprocessing Module 203
An Overview of the Multiprocessing Module 206
Estimating Pi Using the Monte Carlo Method 208
Estimating Pi Using Processes and Threads 210

Using Python Objects 210
Random Numbers in Parallel Systems 217
Using numpy 218

Finding Prime Numbers 221
Queues of Work 227

Verifying Primes Using Interprocess Communication 232

Table of Contents | v

Serial Solution 236
Naive Pool Solution 236
A Less Naive Pool Solution 238
Using Manager. Value as a Flag 239
Using Redis as a Flag 241
Using RawValue as a Flag 243
Using mmap as a Flag 244
Using mmap as a Flag Redux 245

Sharing numpy Data with multiprocessing 248
Synchronizing File and Variable Access 254

File Locking 255
Locking a Value 258

Wrap-Up 261

10. Clusters and Job Queues 263
Benefits of Clustering 264
Drawbacks of Clustering 265

$462 Million Wall Street Loss Through Poor Cluster Upgrade Strategy 266
Skype's 24-Hour Global Outage 267

Common Cluster Designs 268
How to Start a Clustered Solution 268
Ways to Avoid Pain When Using Clusters 269
Three Clustering Solutions 270

Using the Parallel Python Module for Simple Local Clusters 271
Using IPython Parallel to Support Research 273

NSQ for Robust Production Clustering 277
Queues 277
Pub/sub 278
Distributed Prime Calculation 280

Other Clustering Tools to Look At 284
Wrap-Up 285

11. Using Less RAM 287
Objects for Primitives Are Expensive 288

The Array Module Stores Many Primitive Objects Cheaply 289
Understanding the RAM Used in a Collection 292
Bytes Versus Unicode 294
Efficiently Storing Lots of Text in RAM 295

Trying These Approaches on 8 Million Tokens 296
Tips for Using Less RAM 304
Probabilistic Data Structures 305

Very Approximate Counting with a 1-byte Morris Counter 306
K-Minimum Values 308

vi | Table of Contents

Bloom Filters 312
LogLog Counter 317
Real-Wo rid Example 321

12. Lessons from the Field 325
Adaptive Labs Social Media Analytics (SoMA) 325

Python at Adaptive Lab 326
SoMA's Design 326
Our Development Methodology 327
Maintaining SoMA 327
Advice for Fellow Engineers 328

Making Deep Learning Fly with RadimRehurek.com 328
The Sweet Spot 328
Lessons in Optimizing 330
Wrap-Up 332

Large-Scale Productionized Machine Learning at Lyst.com 333
Pythons Place at Lyst 333
Cluster Design 333
Code Evolution in a Fast-Moving Start-Up 333
Building the Recommendation Engine 334
Reporting and Monitoring 334
Some Advice 335

Large-Scale Social Media Analysis at Smesh 335
Python's Role at Smesh . 335
The Platform 336
High Performance Real-Time String Matching 336
Reporting, Monitoring, Debugging, and Deployment . 338

PyPy for Successful Web and Data Processing Systems 339
Prerequisites 339
The Database 340
The Web Application 340
OCR and Translation 341
Task Distribution and Workers 341
Conclusion 341

Task Queues at Lanyrd.com 342
Python's Role at Lanyrd 342
Making the Task Queue Performant 343
Reporting, Monitoring, Debugging, and Deployment 343
Advice to a Fellow Developer 343

Index 345

Table of Contents | vii

